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Abstract
FORTRAN is widely viewed as the programming language of

choice for scientific and numerical computations.  However,
limitations of the language lead some to argue that it should be
replaced by another language which better lends itself to the production
of structured and maintainable code.  We provide quantitative data
relevant to this argument by reporting on a port of the NAS Kernels
benchmark program from FORTRAN 77 to ANSI/ISO Standard C.

Single-processor performance results for the CRAY Y-MP,
CRAY-2, Convex 3240 and SGI 4D/25 are reported for C and FORTRAN
versions of the code.  Strengths and weaknesses of C vis a vis
FORTRAN are evaluated.  While the structured programming features
of C are quite desirable, FORTRAN arrays provide the programmer
with much more flexibility and aid the compiler in producing
optimized code.
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1. Introduction
FORTRAN has long been the de facto standard programming

language in the scientific and numerical analysis communities.  In
recent years, C has become widely used beyond its original role as a
systems programming language, and is sometimes suggested as a
suitable language for scientific programming.  Standard ANSI/ISO C [1]
is becoming widely available, placing the language on the same footing
as FORTRAN 77 [2].  Fortran 90 [3], recently adopted by ANSI and ISO,
is to date only available from third party software houses and cannot
yet be compared to either FORTRAN 77 or Standard C.

Several C language features make it an attractive choice for
numerical computing.  Structs provide a natural way to combine
related data in a single structure.  Pointers and the ability to
dynamically allocate memory allow the programmer to handle varying
amounts of data in a reasonable way.  Include files and scoping rules
allow better control of access to data by different subroutines.

In addition to the inevitable hurdles facing adoption of a new
language, there are several potential problems which must be
addressed when considering a change from FORTRAN to C.  Pointers,
cited as an improvement above, can hurt performance by making it
more difficult for the compiler to analyze and optimize code.  C
implements multi-dimensional arrays in a less flexible way than
FORTRAN, leading to questions about its effectiveness in large scale
numerical computations.

In this paper a port of an existing benchmark code is discussed,
with particular emphasis on testing the weak points of C vis a vis
FORTRAN.  The code selected for this project was the NAS Kernels
benchmark program [4].

1.1 Description of kernels
The NAS Kernels Benchmark Program is a collection of

FORTRAN 77 subroutines which characterize vectorized
Computational Fluid Dynamics (CFD) codes running on the NAS high
speed processors.  The kernels represent algorithms which are used
inside application programs, but are not complete applications.  Each
kernel is called by its own driver subroutine, which sets up input data
arrays, performs timing, and calculates the fractional deviation of a
single output array element from a pre-determined reference value.

Table 1 contains the number of floating point operations (flops)
in each kernel.  These numbers are computed by the benchmark code
for each run.  The flop counts are identical to those produced by the
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FORTRAN version of the code and do not vary from computer to
computer, providing a meaningful basis for comparison between
executables.  Performance results in MFLOPS (Millions of Floating
Point Operations per Second) are calculated using the numbers in Table
1.  The sum of the fractional errors for all kernels may not exceed 5 x
10-10.  Performance results on the FORTRAN 77 NAS Kernels have
been reported previously [5].  The code has been ported to an early
version of Fortran 90 [6].

Table 1:  Flop counts for the NAS Kernels

Kernel Number of flops

mxm 4.1943 x 108

fft 4.9807 x 108

Cholesky 2.2103 x 108

btrix 3.2197 x 108

gmtry 2.2650 x 108

emit 2.2604 x 108

vpenta 2.5943 x 108

1.1 Description of tested machines
The performance results described in this report were obtained

on two supercomputers, a mini-supercomputer, and a workstation
installed at the Numerical Aerodynamics Simulation (NAS) Project at
NASA Ames.  These machines are described below.

The NAS CRAY Y-MP is an eight CPU, multiple instruction
multiple data stream (MIMD), shared memory computer system from
CRAY Research, Inc. (CRI).  The clock period (CP) is 6.0 nanoseconds
(ns), and there are 256 MW of main memory.  The operating system
(UNICOS 6.1) is UNIX System V based.  Performance results described
herein were obtained by running the Y-MP in dedicated time, although
workload results closely reproduce the dedicated time results.

The NAS CRAY-2 is a four CPU, MIMD, shared memory
computer system.  The clock period is 4.1 ns, and there are 256 MW of
main memory.  The CRAY-2 operating system is UNICOS 6.1.  Unlike
the Y-MP, the CRAY-2 does not allow multiple and overlapping
memory bank accesses.  CRAY-2 workload results show poorer
performance than do the dedicated time results reported here.
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The NAS Convex C3240 is a four CPU, MIMD, shared memory
computer system.  The clock period is 40 ns, and there is one GByte of
main memory.  The ConvexOS operating system is partially derived
from BSD UNIX release 4.2.

This study used a single-CPU Silicon Graphics, Inc. (SGI) 4D/25
workstation with 16 MBytes of RAM, a 32 KByte data cache, and a 64
KByte instruction cache.  The processor was a 20 MHz MIPS R3000,
with a R3010 floating point co-processor.  The IRIX 4.0 operating system
is based on System V Release 4.

Convex and SGI performance results were obtained using CPU
times measured in lightly loaded environments.  The shortest CPU
time in a series of measurements was chosen as the best approximation
to a dedicated time result.

1.2 Compiling Systems
The CRI FORTRAN compiling system, cf77 [7], comprises a

compiler (cft77), two pre-processors (fpp and fmp), and a loader (segldr).
Fpp restructures code, inserts directives, and makes library
substitutions in preparation for fmp, which parallelizes the code.  Cf77
is a standard FORTRAN 77 compiling system with CRI extensions.
These extensions include compiler directives for vectorization and
parallelization, and Fortran 90 array constructs.  This study was
performed with cft77 version 5.0.1.18, fpp version 5.0, and segldr
version 6.0.

The CRI C compiler, scc [8], incorporates the functions of both an
Standard C pre-processor and a compiler.  Scc invokes segldr to link the
object files.  The compiler accepts directives in the form of #pragma
statements, and has CRI extensions to the standard, including variable-
dimension arrays and complex arithmetic.  This study was performed
with scc release 3.0.3.3.

The Convex FORTRAN compiler, fc [9], is a single-step compiler
which then invokes the link editor (ld) to link the object files.  The
compiler (version 7.0) supports numerous extensions, including
vectorization and parallelization directives and Fortran 90 array
constructs.

The Convex C compiler, cc [10], combines the pre-processor and
compiler into a single executable. Cc version 4.3.2.0 was used in this
work. Cc invokes ld to link the object files.

SGI supplies a FORTRAN compiler, f77 [11], and a C compiler, cc
[12].  Both compilers support the relevant standards as of IRIX release
4.0.  The GNU project C compiler (gcc), which supports the C standard,
was also used in this study.  Versions 3.4.1, 2.0.1, and 2.0.2 of f77, cc, and
gcc, respectively, were used in this study.
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1.3 Data Storage
The basic floating point type in FORTRAN (REAL) and C (float)

occupies 64 bits of memory on CRI machines.  The floating point
mantissa is represented by 48 bits in hardware, although only 47 bits are
guaranteed by the model specified in the C documentation [8].  The
basic integer type (INTEGER and int for FORTRAN and C, respectively)
uses 46 bits by default.  Compiler switches can be used to change this to
64 bits.  Floating point instructions in the executable code produced by
scc and cf77 approximate floating point rounding in the same manner.

INTEGER and int words are 32 bits long on both the C3240 and
the 4D/25.  REAL and float are also 32 bits long on these machines.  The
results for these machines reported in this paper are obtained using
DOUBLE PRECISION or double types for FORTRAN and C,
respectively.  These are 64 bit words in each case, 53 bits of which are
assigned to the mantissa.  The C3240 data were obtained with the IEEE
floating point mode, which uses the IEEE format and does not use IEEE
arithmetic [13].

2 Differences between C and FORTRAN
The original FORTRAN code was contained in a single file.  The

Standard C port was divided into eleven files.  Each kernel is packaged
together with its driver into a single file, for a total of seven files. (Both
FFT kernels are contained in the same file.)  The main routine and the
timing routine each have their own file.  There are two header files:
one contains global constants and type definitions, while the other
contains the complex arithmetic macros and typedef.

The major implementation details of this port are described
below.  A more detailed discussion of the issues pertaining to the use of
C for numerical computations may be found in [14].

2.1 Derived types

2.1.1 Complex numbers
Unlike FORTRAN, C does not have a built-in type for complex

numbers.  As no direct translation is possible, the following policies
were adopted for use in this port.

No vendor-specific extensions were used.  In particular, CRI
provides a complex data type which may be manipulated with the
standard operators; this type was avoided.  Macros were used as much
as possible to substitute for the FORTRAN operators and intrinsic
functions.  Macros were written for sums, differences, products, ratios,
inverses, exponentials, and assignment of complex numbers.  Macros
were also used for multiplication by real and imaginary constants.
Macros (implemented with #define statements) were preferred over
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function calls for performance reasons, as they do not rely on a
compiler's ability to inline functions.

While it was necessary to re-write many statements, the
FORTRAN order of arithmetic operations was retained whenever
possible.  It was sometimes necessary to break up a single FORTRAN
statement; in these cases, the alternate configuration requiring the
fewest macro calls was chosen.

2.1.2 Floating point type definition
In order to facilitate porting between machines with differing

floating point precision, a real64 type was defined.  This type is set to
float in the main include file.  Changing the typedef to double allows 64
bit arithmetic on most machines with 32 bit floating point.

2.2 Arrays
Automatic, statically allocated, arrays are declared with a syntax

similar to FORTRAN arrays, to wit:  float x[10][5].  The obvious syntax
difference from FORTRAN is due to the fact that an n-dimensional C
array is an array of pointers to (n-1)-dimensional arrays for n (n>1).  In
addition, the ordering of indices is reversed.  The above example
defines the same storage in memory as the FORTRAN statement:
REAL X(5,10).

C arrays are addressed with zero-based indices.  This differs from
the FORTRAN default of one-based indices. C does not provide the
flexibility which FORTRAN supplies with declarations such as:  REAL
X(5:10,10), in which arbitrary initial indices may be specified.

Standard C does not allow the user to pass FORTRAN-style
variable-dimension multi-dimensional arrays.  All dimensions except
for the left-most (slowest-running) must be completely specified at
compile time.  This restriction is due to the fact that additional
dimensions require new arrays of pointers.  CRI's C compiler allows
the user to pass FORTRAN-style arrays, but this extension was not used
here.

The C standard allows programmers to work around some of the
above problems.  Variable-dimension multi-dimensional arrays may
be emulated in a variety of ways using pointers and dynamic memory
allocation.  This issue is not addressed here, but the reader should note
that the performance of a code will vary depending on whether
dynamic or automatic arrays are used, and and the type of dynamic
array which is implemented.  There appears to be no general solution
for the restriction to zero-based arrays.  A common work-around [15]
uses pointer arithmetic to adjust the origins of arrays outside of their
original bounds.  This relies on behavior which the C standard leaves
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undefined, and thus may not be used in a standard-conforming
program [1].

2.3 Parameters
The FORTRAN parameter statement allows the programmer to

associate a constant with a symbolic name inside a single program unit
(subroutine, function, or main program).  While C does not have an
exact analogy, the cpp #define statement provides similar functionality.
During the pre-processor phase of compilation, all occurrences of the
symbolic name given in the #define statement are replaced with the
constant specified by the statement.  The compiler thus compiles code
with a constant, achieving the same effect as the PARAMETER
statement.  By placing the #define statements inside include files, an
advantage is gained over FORTRAN in that a constant is guaranteed to
be the same in every routine which uses that include file. A practical
disadvantage of using #define statements is the inability of many
debuggers, including the CRI debugger, to examine the values of
constants so defined.

Certain kernel routines had dummy arguments corresponding
to PARAMETER constants in their driver routines.  These arguments
were deleted from the C kernel's formal parameter list, as the data was
available through the #define and #include mechanisms.

C also provides a const qualifier which allows the programmer
to specify in a variable's declaration that it is not to be changed.  The
intent of const may be evaded by using pointers.  While the standard
specifies that the behavior of such code is undefined, most compilers
fail to detect this evasion unless particular flags are set.  The const
qualifier thus was not considered a reasonable replacement for the
PARAMETER statement.

2.4 Commons
The NAS Kernels use a working space which consists of 360,000

words of named COMMON.  This COMMON is included in all kernel
drivers, and some kernels.  In the remaining kernels, the data is passed
in as dummy arguments.  In the C port, the data arrays are defined in
each driver.  For kernels which accessed data via COMMON, the data
arrays are given file scope with local linkage.  Otherwise, the arrays are
passed in the parameter list.

2.6 Function Prototypes
Standard C allows the programmer to write prototypes specifying

the usage of each function before it is used.  This allows the compiler to
type-check each invocation of a function.  All functions in this port
were prototyped.
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2.7 New Operators
The C programming language provides a number of assignment

operators in addition to the "=" operator available in FORTRAN.
These operators allow the programmer to combine arithmetic
operations with assignments to a variable, decreasing the likelihood of
such errors as typing mistakes.  These operators include: +=, -=, *=, and
/=, where for example, the statement "x=x+y" may be replaced by
"x+=y".

2.8 Required User-written macros
Several commonly used FORTRAN intrinsic functions and

operators do not have analogous standard macros or functions in C.
Those which were relevant in this port were the amin and amax
functions, and the ** operator.  Three macros, named max, min, and
square, were written to provide comparable functionality.

2.9 Order of Evaluation
FORTRAN allows the programmer to specify the order in which

an expression is evaluated by the use of parentheses.  Parentheses may
be used to achieve the same end in C, although in more limited
circumstances.  In particular, using parentheses allows the programmer
to specify an order of evaluation which differs from that obtained with
the default precedence rules.  When grouping operators of equal
precedence, as in a sum of four variables, the compiler may choose any
correct order of evaluation irrespective of parentheses present in the
expression.  A standard-conforming C compiler may not vary the order
of evaluation.

2.10 NAS Kernels COPY Routine
The NAS Kernels COPY subroutine, which is used to copy saved

data into a kernel's input data, was not ported.  Rather, the Standard C
library routine memcpy was used.  This routine is vectorized on the
CRI machines.

3 Automatic Code Translation

The use of f2c [16], an automatic FORTRAN-to-C code translator,
was considered for this project, despite the fact that its authors suggest
it is more appropriate for use as a compiler than as a translator.  They
warn that f2c produces C code which is cryptic, difficult to maintain,
and bears little resemblance to the original FORTRAN source code.
This warning proved to be well-founded, due in part to the fact that
array computations are implemented using explicit pointer arithmetic.
A brief investigation of the translated code found that the performance
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of the kernels containing complex arithmetic was limited by the fact
that complex operations were implemented as functions rather than
macros.

4 Results

Performance results for the un-modified kernels are given in
Table 2 below.  (Some compilers could not generate 64 bit floating point
code for the kernels as written.)  Table 3 contains the error as reported
by each kernel.  In each case, the compilation options which attained
the best performance were used.  The differences between the CRAY-2
and Y-MP errors are due to differences in floating point arithmetic.
The Convex and SGI machines are expected to have better precision,
due to longer mantissas (cf.  sect. 1.3).

Table 4 shows performance results for those compilers where
minimal line changes were required.  Five lines were changed for the C
code on the Convex.  First, the real64 type was re-defined as double.
Also, local arrays in fft and cholesky were declared as static due to a
compiler-imposed limit on the size of stack-allocated arrays.  In porting
the C code to the SGI, the only line change required was the real64 type
re-definition.

Table 2:  Performance (in MFLOPS) with no line changes

Computer Com-
piler

mxm fft Chol. btrix gmtry emit vpnta Total

Y-MP scc 250 74.8 88.8 140 131 183 50.1 102

cf77 305 76.3 90.9 153 251 183 51.9 111

CRAY-2 scc 199 10.0 27.2 53.7 28.0 149 9.26 22.8

cf77 417 11.3 27.1 58.1 176 148 9.23 24.2

C3240 fc 35.2 7.10 12.5 13.6 21.5 25.3 3.73 10.2

The FORTRAN kernels which did not use complex variables ran
with good precision on the SGI with no line changes.  However, 25 line
changes were required to change the cmplx, real, and aimag intrinsics
to dcmplx, dreal, and dimag in the remaining kernels.  The latter three
intrinsics are SGI extensions for their DOUBLE COMPLEX type, and are
not part of FORTRAN 77.  These changes violate the rules for official
FORTRAN NAS Kernels performance measurements [5].



1 0

Table 3:  Fractional error x 1013

Computer Com-
piler

mxm fft Chol. btrix gmtry emit vpnta Total

Y-MP scc 0.517 32.00 1825.6 29.72 8.380 1.561 12.17 1910

cf77 1.809 32.00 1825.6 60.62 6.561 1.561 2.354 1931

CRAY-2 scc 0.0646 2.104 768.8 64.35 115.2 0.473 8.265 959.2

cf77 0.1292 2.104 768.8 74.89 97.81 0.473 7.313 951.5

C3240 cc 0.0303 1.289 65.97 5.724 2.240 0.132 0.0877 75.47

fc 0.0303 1.289 65.97 5.724 0.867 0.108 0.0877 74.07

SGI 4D/25 cc 0.0283 0.374 28.78 0.0562 0.450 0.027 0.418 30.14

gcc 0.0283 0.374 28.78 0.0562 0.450 0.027 0.418 30.14

f77 0.0343 0.374 28.78 2.503 2.588 0.025 0.085 34.39

Table 4: Performance results with "minimal" line changes

Computer Com-
piler

mxm fft Chol. btrix gmtry emit vpnta Total

C3240 scc 35.5 5.01 11.3 19.3 15.4 15.2 3.74 9.03

SGI 4D/25 cc 2.67 1.52 0.94 1.75 1.01 3.32 0.97 1.48

gcc 2.27 1.00 0.83 1.56 0.87 2.76 0.92 1.22

f77 3.06 1.50 0.91 1.75 1.05 3.23 1.04 1.52

4.1 C Compiler Options

A C compiler may, unlike a FORTRAN compiler, fail to
vectorize loops due to potential aliasing of variables through pointers.
A more successful analysis will result in maximum safe vector lengths,
although these may be much smaller than the hardware vector size.
Additionally, a C compiler must analyze possible loop recurrences and
complex loop indices, as does a FORTRAN compiler.

The above analyses can be bypassed by supplying a command
line option which instructs the compiler to insert vectorization
directives before each loop.  CRI's -hivdep option performs this
function; Convex has no such option.  This option is both effective and
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dangerous, as it allows the user to force the vectorization of loops for
which recurrence warnings are correct.

The CRI -hrestrict=f option informs scc that all pointers are
restricted pointers.  A restricted pointer is assumed to point to objects
which are not referenced through any other pointers.  This allows the
compiler to optimize code assuming that no aliasing occurs.  As in
FORTRAN, the programmer must ensure that the assumption is
correct.

Convex cc may be invoked in a standard-compliant mode, or
with language extensions.  Cc accepts command line options (-alias
array_args, -alias ptr_args) which together provide the same
functionality as CRI's -hrestrict=f.  The command line option which
instructs cc to use 64-bit floating point fails to accept very large or very
small constants; in these cases, the user must explicitly use the double
floating point type.

The CRI -hrestrict=f and Convex -alias array_args and -alias
ptr_args options will be referred to as restricted pointer options in the
following.

The CRI -hvector3 option initiates aggressive vector
optimization.  This includes expression re-ordering, partial
vectorization for some loops with recursion, and additional
dependence and alias analysis.

Both C compilers used on the 4D/25 provided options for
increasing levels of scalar optimizations.  Neither compiler allowed the
automatic promotion of float to double.

4.1.1 CRI

Vpenta was the only kernel to achieve its best performance
without invoking compiler options.  All loops vectorized, and
aggressive vectorization did not change the performance.  The
performance of the three kernels (mxm, fft, cholesky) which passed
data arrays through the parameter list improved when the restricted
pointer option was used.  Additional gains were obtained for fft and
cholesky  on the Y-MP when aggressive vectorization was invoked,
although the best fft performance was still obtained with -hivdep.
Aggressive vectorization had no effect on CRAY-2 performance.

Table 5 shows the best performance attained without using -
hivdep.  Thus, automatic insertion of compiler directives can be
avoided while incurring only a 5% performance penalty on the Y-MP.
This penalty increases to 26% on the CRAY-2.  Care must be taken in
selecting options, however.  It was found that using restricted pointers
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hurt the performance  of kernels accessing global data on the Y-MP.
There was no such penalty on the CRAY-2.

Table 5:  CRI code performance without forcing vectorization directives

Options: Performance (MFLOPS):

Kernel Y-MP CRAY-2 Y-MP CRAY-2

mxm restrict=f restrict=f 250 199

fft restrict=f,vector3 restrict=f 73.0 9.23

cholesky restrict=f,vector3 restrict=f 88.8 25.5

btrix vector3 none 124 18.8

gmtry vector3 none 96.2 22.1

emit vector3 none 182 146

vpenta none none 50.1 9.26

Total — — 97.2 17.9

The superior performance of mxm and cholesky seen with
restricted pointers may be due to the fact that when -hivdep is used, scc
may still issue CMR (complete memory references) instructions if it
finds possible aliasing [8].  This degrades performance by forcing
otherwise asynchronous memory loads to wait until stores are
complete.  When restricted pointers are used, the compiler will not
issue CMRs.

Table 6:  CRI Loops vectorized without using -hivdep compiler option

Loops: Y-MP 8/256 CRAY-2 4/256

Kernel Vector-
ized

Max. Safe
Vect. Len.

Vector-
izable

Vector-
ized

Max. Safe
Vect. Len.

Vector-
izable

mxm 2 0 2 2 0 2

fft 4 0 4 4 0 4

cholesky 9 0 9 9 0 9

btrix 7 0 7 7 0 7

gmtry 4 1 6 4 1 6

emit 6 1 8 6 1 8

vpenta 7 0 7 7 0 7

Total 39 2 43 39 2 43
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The -hstdc option,which imposes strict compliance to the C
standard, reduced the flop rate of cholesky, gmtry, and emit.  The
performance changed because the standard requires range-checking for
certain mathematical functions; the versions of these functions which
implement range-checking do not vectorize.

4.1.2 Convex
All kernels were compiled with the -O2 option, which invokes

vectorization and function-wide scalar optimization.  In addition, the
restricted pointer option was used for the kernels which accessed data
via the parameter list.  The compiler was able to completely vectorize
five of the seven kernels (cf. Table 7).  Gmtry and emit were only
partially vectorized.  All loops which failed to vectorize contained
complex arithmetic macros; the compiler reported finding "no
induction variable" in these cases.  Other loops containing the same
macros succeeded in vectorizing, however.  As on the CRI machines,
the performance of cholesky, gmtry, and emit degraded when the
standard-enforcing compiler options (std and str) were used.  These
results, which used the IEEE floating point mode, were checked against
runs which used the native floating point mode.  No differences were
found between the two modes.

Table 7: Number of Convex Loops vectorized

Kernel: Vectorized Vectorizable

mxm 2 2

fft 4 4

cholesky 9 9

btrix 7 7

gmtry 1 6

emit 4 8

vpenta 7 7

Total 34 43

4.1.3 SGI
All kernels performed best using cc -O2 cc option on the SGI.

The -O3 option, which added global register optimization, degraded
performance by up to five percent.  The -cord option, which rearranges
procedures to improve caching and paging, had no effect.  The best
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performance using gcc on the SGI was obtained with the -O2 option,
which performs register and loop optimizations.

4.2 FORTRAN Compiler Options
CRI executables discussed in this report were compiled using cf77

-Zv naskern.f, corresponding to processing a code with cft77, fpp, and
segldr.  Convex executables were obtained with fc -cfc naskern.f -lm -
lcfc.  SGI executables were compiled with f77 -r8 naskern.f -lm.

4.3 Library substitutions
The FORTRAN versions of mxm and gmtry ran significantly

faster than did the C versions on both CRI machines.  Fpp substituted
library calls for source code in both of these kernels.  The matrix
multiply nested loop was eliminated in mxm, and a rank-one update
was replaced at the end of gmtry.  Scc did not recognize the analogous C
code as candidates for library substitutions.  Runs comparing the
performance of the FORTRAN code with and without the
substitutions showed that the mxm performance gain due to this effect
was 9% and 90% on the Y-MP and the CRAY-2, respectively.  The
improvement for gmtry was even more dramatic, being 120% and
530%, respectively.

4.4 Effect of assignment operators
As noted in section 2.7, C provides several assignment operators

which are not available in FORTRAN.  Surprisingly, the performance
and precision of two kernels on the CRI machines were affected by the
use of these operators.  The error reported by mxm, btrix  and vpenta
changed to agree with the errors reported by FORTRAN code when the
"=" operator was used on the Y-MP.  More importantly, the
performance of mxm improved to 280 MFLOPS with the use of the "="
operator.  The performance of btrix changed only slightly, increasing to
143 MFLOPS; vpenta's performance increased to 51.9 MFLOPS.

Making the same change on the CRAY-2 resulted in a small
improvement in the mxm flop rate (to 200 MFLOPS), a small decrease
in the btrix flop rate (to 52.8 MFLOPS), and no change in the flop rates
of the other kernels.  As on the Y-MP, the errors reverted to the
FORTRAN values.

Further studies showed that this effect was due to the order of
evaluation imposed by the "+=" operator, in which the right hand side
of an expression is evaluated before it is added to the left hand side.
Using the "=" operator resulted in all variables being summed
simultaneously.  An important improvement on the Y-MP would be
to allow the "+=" operator to be evaluated with performance
comparable to the "=", either automatically or through a compiler
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option which the user could use to allow re-arrangement of expression
evaluation.

While the Convex C compiler was not sensitive to this effect,
both gcc and cc showed the opposite behavior on the SGI.  The errors
reported by all three kernels mentioned above were affected by the
choice of assignment operators.  Only mxm showed more than a minor
dependence of the flop rate on operator.  Using the "=" operator,
mxm's performance decreased to 2.18 and 2.57 MFLOPS with gcc and cc,
respectively.

4.5 Explicit array indexing
A test was performed in which the arrays were accessed as one-

dimensional arrays with indices derived from the multi-dimensional
indices.  The performance did not improve on the CRI machines,
indicating that the intermediate pointers were not being used.  The
same results were observed when the test was performed for mxm
using cc on the C3240, and both cc and gcc on the 4D/25.

4.6 Translation of Complex operations
As noted above (cf. Sect. 2.1.1), complex arithmetic was

implemented using macros.  The only kernel in which the order of
evaluation was difficult to reproduce was gmtry.  This was due to the
appearance in two places of code of the form:

Z1 = EXP( (W1 - W2) * P )

Here, Z1, W1, and W2 are complex, while P is real.  The error obtained
by ordering the C statements as difference, multiply, and exponential
(Order 1) best reproduced the error found on the Y-MP and CRAY-2 (cf.
Table 3).  Calculating the exponentials, and then dividing (Order 2)
decreased the error by a factor of five on the CRAY-2, while increasing
it by a factor of eight on the Y-MP.

Both of the above orders of evaluation produced the same error
on the C3240.  Order 2 achieved the best agreement (< 1%) between the
C and FORTRAN errors on the SGI for cc and gcc.  The choice of order
of evaluation did not affect the performance of gmtry on any of the
tested machines.

5 Precision of results

5.1 Dependence of precision on compiler options
On all tested machines except the SGI, the errors reported by

some kernels changed when certain compiler options were tried.  The
relevant options are the -hstdc and -hvector3 options on the CRI
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computers, and the -std, and -str options on the Convex computer.  In
no case was the resulting error unacceptably high.

As noted above (cf. Sect. 4.1), the -hstdc option inhibited the
vectorization of four kernels.  The errors of gmtry and emit changed on
both the CRAY-2 and the Y-MP, while that of fft changed on the CRAY-
2 alone.  This change appears to be due to the fact that different
versions of the mathematical functions are called with the -hstdc
option, rather than the lack of vectorization.  Runs of un-vectorized
executables compiled without the -hstdc option reported the same
errors as are shown in Table 3.  The -hvector3 option resulted in
changed errors for btrix and vpenta on the Y-MP.  This option causes
aggressive optimization, and small changes in the error may not be
surprising.

The errors reported by all kernels except cholesky and gmtry
changed when either the -std or -str options were invoked on the
C3240.  These options progressively more restrictive adherence to the
standard.  As on the CRI machines, the compiler uses different
versions of the mathematical routines with these options.  This may
account for the change in the error.

5.2 Tests of reference answers
The reference answers were originally obtained by running the

kernels on a VAX using extended floating point.  As the error reported
by the C and FORTRAN NAS Kernels differed on all machines tested,
several tests were performed to determine whether smaller reported
errors represented more precise answers.  The C and FORTRAN codes
were run with 128 bit floating point arithmetic on the Y-MP using the
long double and DOUBLE PRECISION data types, respectively.  In
addition, a multiple-precision arithmetic package [17], developed by
D.H. Bailey at NAS, was used to generate answers using 256 bit floating
point arithmetic for all kernels except gmtry, and emit.  (The multiple
precision versions of the latter two kernels were not tested due to the
prohibitive amount of CPU time required.)  The results of these tests
are summarized in Table 8.

Table 8:  Fractional deviation of reported Y-MP result from reference value
x1013

mxm fft Cholesky btrix gmtry emit vpenta

128 bit FORTRAN .0028 0.73 41 3.5 5.3 0.17 .0056

128 bit C .0028 1.3 41 3.5 0.66 0.17 .0056

256 bit MPFUN [16] .0028 1.2 41 17 — — .0056
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Comparing the results in Table 8 to the errors reported in Table
3, it appears that the smaller errors reported for mxm, cholesky, and
vpenta reflect more precise answers.  Further, all differences between
64 bit CRI results and the reference values exceed those given in Table
8, indicating that the smaller errors do result from more precise results
on the Y-MP and the CRAY-2.  Detailed investigation beyond the scope
of this report would be required to assess the relative precision of the
SGI and Convex results, although they are both clearly more precise
than the CRI calculations.  The effect of CRI floating point arithmetic
on Cholesky factorization, which has the largest fractional deviation in
Table 8, has been studied in detail[ 18 ].

6 Remarks
Several issues have been raised by this study.  While C code

written using automatic arrays performs well, many programmers will
require (at least) the flexibility offered by FORTRAN variable-size
arrays.  To this end, data on the performance of various strategies for
dynamically allocated arrays is needed.  Programmers may also be
interested in using structs to define their own data structures.  The
performance of code using structs remains to be studied.

In addition to the language and performance issues just
mentioned, there are several respects in which the C compilers studied
need to be improved.  None of the C compilers studied produced full
source code listings with diagnostics.  At best, optimization messages
were printed with line number references which did not always
correspond to the line numbers used by text editors.

The CRI and Convex C compilers, unlike the SGI C compilers
and the various FORTRAN compilers, required additional command
line options beyond such simple switches as -O2.  While this is
appropriate for such actions as automatic insertion of compiler
directives, it may be best to incorporate optimizations based on
restricted pointers as the defaults for aggressive vectorization levels
(i.e. -hvector3 and -O2 for CRI and Convex, respectively).  Further,
some of the analysis and optimization presently performed with the
CRI -hvector3 option seems to be more appropriate to the (default) -
hvector2 option, as it corresponds to optimizations performed by cf77
with no options.

The Convex vectorization analysis, which was successful in
most kernels, had problems with some loops involving complex
macros in gmtry and emit.  The CRI vectorization analysis also needs
some improvement, as evidenced by the superior performance of most
kernels compiled with the -hivdep option.

The performance results reported here do not necessarily reflect
the best results which a programer can achieve when tuning a code for
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performance.  Rather, they correspond as nearly as possible to
NASKERN tuning level 0 [5].  Similar changes to the C and FORTRAN
codes may yield different performance gains.

Variation of code performance with problem size was not
addressed in this study.  Changes in the sizes of various arrays in these
kernels may affect the FORTRAN and C versions differently.

6.1 Problems
Several problems should be noted here.  Performance on the Y-

MP drops when the restricted pointer option is invoked.  As no change
is performance is expected, this effect is unwelcome.   When the +=
operator is used to increment array elements, mxm suffers a 11 %
performance loss on the Y-MP, while vpenta's performance drops by 4
%.  A remedy for this problem should be part of the default compiler
optimizations.

The Convex C compiler imposed a limit, not found in other
compilers, on the size of automatically allocated arrays.  The automatic
conversion to 64 bit floating point failed to correctly handle very large
constants.

Both C compilers on the 4D/25 showed a mxm performance
drop of 5% when the = operator was used.  Again, default code
optimization should be insensitive to the choice of assignment
operator.

7 Summary
The NAS Kernels have been ported to Standard C.  Performance

comparable to the original FORTRAN code was obtained for all
platforms tested, although in each case command line arguments were
required.  Errors were within the bounds specified for the original
benchmark.  The principal difficulty in re-writing the code was
changing the array indices.

The f2c program was also used to generate C code.  This code was
difficult to maintain and modify.  The performance was poor,
principally due to the use of functions rather than macros for complex
arithmetic.  For small codes such as the NAS Kernels, a hand-coded
port is clearly the best approach.  For large codes, it may be worthwhile
to investigate better automated tools.
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